La microscopie à effet tunnel à basse température : Un outil de choix pour observer les molécules

C. Chacon et J. Lagoute

Matériaux et Phénomènes Quantiques, CNRS et Université Paris Cité

Outline

Quick reminder of Scanning Tunneling Microscopy (STM)

- Why we need and how we reach Low Temperature (LT)?

 Examples of molecules on surface and what can be achieved with STM and LT.

- Focus on the elaboration of p-n junctions on N-doped graphene

Scanning Tunneling Microscopy (STM)

 $I \propto e^{-\alpha z}$ Exponential dependence of the tunnel current with the tip-sample distance -> **STM**

$$\frac{dI}{dV} \propto \rho_s(\vec{r}_0, eV)$$

 ρ_s : Local density of states of the sample -> **STS**

Scanning Tunneling Microscopy (STM)

Quantum Corral

Artificial ring of 48 iron atoms on a Cu(111) surface Confined states du to the electron-trapping effect

Carbon monoxide man

28 CO molecules on Pt(111)

4

Why we need Low Temperature (LT)

- UHV conditions: If the microscope is incorporated in a cryostat that acts as an effective cryopump, surfaces are kept free
- Physical properties can be studied as a function of temperature or physical effects can be examined that occur only at low temperatures
- Small thermal broadening at the Fermi energy is a necessary condition for spectroscopic investigations with high-energy resolution
- Individual adsorbates can be manipulated with the STM to qualitatively probe their interaction with the substrate.
- Thermal diffusion of adsorbates and defects is suppressed.
 - Reduction of thermal drift and allows long-term measurements.
- Piezo nonlinearities and hysteresis (creep) affecting the piezoelectric scanners of the STM decrease substantially at low temperatures

How do we reach Low Temperature

The most conventional LT-STM instrument : down to 4 K on the sample stage

Close coupling of the microscope to a large temperature bath that keeps constant temperature over hours or days

Cryostat

Shields

Opt. access

How do we reach Low Temperature

More recently : The LT-STM instrument coupled to a **Gifford-McMahon Cryocooler** down to 9 K on the sample stage

Examples of molecules on surface : H₂TPP

Tetraphenylporphyrin

Examples of molecules on surface : H₂TPP on Au(111)

Tetraphenylporphyrin

100 nm, -0.8V, 120 pA V. D. Pham et al., J. Phys. Chem. Lett. <u>7</u>, 1416 (2016)

9

Examples of molecules on surface : H₂TPP on Au(111)

Atom trapping chemistry: H₂TPP+adatom

10 nm x 10 nm[,] 1V, 100 pA

Jumper

10 nm x 10 nm

V. D. Pham et al., ACS Nano 11, 10742 (2017)

Examples of molecules on surface : H₂TPP on (N dopped)Graphene

Post-synthesis Nitrogen-doping, exposure to N₂ plasma

Y. Tison et al., ACS Nano <u>9</u>, 670 (2015)¹¹

Examples of molecules on surface : H₂TPP on (N dopped)Graphene

H₂TPP island on graphene

Molecular lattice

- Molecular network after RT annealing
- Lattice not following the symmetry of graphene, molecule-molecule interaction stronger than molecule-graphene

-1.5 V, 20 pA V a = 1.41±0.01 nm θ = 96.8° **12**

Examples of molecules on surface : H₂TPP on (N dopped)Graphene

Voltage dependent contrast

V. D. Pham et al *Sci. Rep.* <u>6</u>, 24796, (2016)

Tetracyanoquinodimethane

Examples of molecules on surface : TCNQ on (N dopped)Graphene

• Molecular network after RT annealing

Exp

DFT

a = 0.93 \pm 0.01 nm b = 0.89 \pm 0.02 θ = 85 \pm 2°

Nearly square lattice. Stabilization energy due to hydrogen bond -0.31 eV / molecule

30×30 nm²

Examples of molecules on surface : TCNQ on (N dopped)Graphene

DFT

16

V. D. Pham et al. npj 2D Materials and Applications 3, 5 (2019)

Examples of molecules on surface : C_{60}

fullerene

Examples of molecules on surface : C_{60} on Cr(001)

Magnetic tip: Fe/W

100*100 nm²

- Deposition of C_{60} at low temperature - Compare C_{60} on spin up and spin down terraces to measure C_{60} spin polarization

Examples of molecules on surface : C_{60} on Cr(001)

- Magnetic contrast and intramolecular resolution

colorscale: conductance map at - 0.025 V

Examples of molecules on surface : C_{60} on Cr(001)

Kawahara, S. L. et al., Nano letters (2012)

Sharp vs smooth junction

Smooth junction d > λ_F

cf. PRB <u>74</u>, 041403(R) (2006)

Sharp junction $d < \lambda_F$ (d<20 nm)

cf. Science 315, 1252 (2007)

Experimental platforms for pn junctions

Pristine graphene

External potential

Electrostatic gating

X. Zhou ... & A. N. Pasupathy ACS Nano <u>13</u>, 2558 (2019)

Doped graphene

CVD on patterned substrate

G. Wang et al., Nat. Commun. <u>9</u>, 1-9 (2018) Actual width of the junction unknown

Electronic properties of graphene

Junction in nitrogen doped graphene

Nitrogen

Realization of a junction in nitrogen doped graphene

Molecular mask on graphene for nanostructuration of nitrogen doping

C₆₀/graphene after nitrogen plasma

Nitrogen doping of graphene reduced below the C₆₀ island

65% of incoming nitrogen species are stopped by the C_{60} monolayer

 Post synthesis 3 steps
 1 molecule
 2 Plasma
 3 annealing
 nn' graphene

 dopants nanodomains
 1 molecule
 2 Plasma
 3 annealing
 nn' graphene

Large scale STM image

Homogeneous distribution of nanodomains on the sample => suitable for STM studies of junctions

Unipolar nn' junction in graphene: Dirac point mapping

STM image of nn' junction

-0.3V, 200 pA

pn junction

Junction on a low doped graphene area

dI/dV along the p-n junction

On low doping regions, the natural p doping of graphene dominates the n-doping due to nitrogen

 \Rightarrow p-n junction is formed on these domains. Width 5.5 nm

Conclusions

Scanning Tunneling Microscopy (STM) and Low Temperature (LT) is a powerful technique in order to :

- See organic molecules and understand for structures on surfaces
- Evidence their electronic properties by combining experimental measurements and theoretical calculations
- Create and understand model systems which allows to imagine future working devices.