

Université de Lille





## Molecular Beam Epitaxy Presentation and issues related to UHV

Xavier Wallart



Journées RT Vide - 20 juin 2023



centrale**lille** 

### Outlook

- Introduction
   1.1. What's and why epitaxy?
   1.2. Main application areas
- 2. III-V semiconductor epitaxy
- 3. III-V Molecular Beam Epitaxy (MBE)
  - 3.1. Why ultra high vacuum (UHV)?
  - 3.2. Core element : the effusion cell
  - 3.3. Other cells

#### 4. 2D material epitaxy

### What's and Why Epitaxy?

Epitaxy or epitaxial growth

Growth of material B on crystalline material A (substrate) keeping crystalline order

≠ material deposition ⇒ amorphous or polycrystalline material

### Interest

- monocrystalline layers, high quality materials
- interface and thickness precise control ⇒ quantum structures
- Main concerned materials and some related applications
  - - $\Rightarrow$  high frequency microelectronics (µwave circuits for telecoms, radars,...)

Metals

Oxides

- ⇒ spintronics, Giant magnetoresistance, memories
- ⇒ functional materials, energy harvesting, photonics
- 2D materials
- ⇒ graphene, TMDs

Besides : at the heart of numerous main discoveries and Nobel prizes



### **Applications : photonics**



#### Lasers



### Vertical-cavity surface-emitting lasers (VCSEL) with InGaAs based active region and AlGaAs/GaAs bragg reflectors

Si Zhu et al, Optics express 26, 14514 (2018)

Mid-infrared laser diodes epitaxially grown on (001) silicon M. Rio Calvo et al., Optica 7, 263 (2020)

- Fiber optics communications
- Sensing
- Lighting

iemn

#### THz

Uni-travelling carrier <sup>sem</sup> to photodiode for THz generation

P. Latzel et al., IEEE Trans. THz Sci. and Technol. 7, 800 (2017)





### **Applications : high frequency electronics**

source

BCB

cap

host substrate (Si)

#### Heterojunction bipolar transistor (HBT)



#### AlInP/GaAsSb DHBT transferred on a silicon substrate

A. Thiam et al., IEEE El. Dev. Lett. 35, 1010 (2014)

#### **Quantum structures**

#### Suspended InAs nanowirebased transistors M. Pastorek et al., Nanotechnology 30, 035301 (2019)

emn





#### High electron mobility transistor (HEMT)

drain

cap

cap

gate 2

Schottky InAlAs 120Å

channel InGaAs 300Å

Schottky InAlAs 120Å

gate 1

| InGaAs    | 10 nm Nd= | =5.10 <sup>18</sup> cm <sup>-3</sup> | cap layer                            |
|-----------|-----------|--------------------------------------|--------------------------------------|
| InAlAs    | 12 nm     | barrier                              | Si-δ-doped                           |
| InAlAs    | 5 nm      | spacer                               | (5.10 <sup>12</sup> cm <sup>-2</sup> |
| InGaAs    | 30 nm     | channel                              |                                      |
| InAlAs    | 5 nm      | spacer                               | Si-δ-doped                           |
| InAlAs    | 12 nm     | barrier                              | (5.10 <sup>12</sup> cm <sup>-2</sup> |
| InGaAs    | 10 nm Nd= | =5.10 <sup>18</sup> cm <sup>-3</sup> | cap layer                            |
| InAlAs    | 10 nm     |                                      | letch-stop                           |
| InGaAs    | layers    |                                      |                                      |
| InP subst | rate      |                                      |                                      |

InAlAs–InGaAs Double-Gate HEMTs transferred on a silicon substrate

N. Wichmann et al., IEEE El. Dev. Lett. 25, 354 (2004)

- High frequency electronics and communications
- Radar
- Aerospace and military systems
- Quantum electronics

#### Journées RT Vide - 20 juin 2023

### **Other applications**

#### **Giant magnetoresistance in metallic heterostructures**

A. Fert, P. Grunberg, Nobel Prize 2007



Sensors

emn

Memories

#### ⇒In all examples, stacking of several layers a few nm or 10 nm thick with high crystalline quality

# **Oxide heterostructures for functional materials** (piezoelectrics, ferroelectrics,...)



INL, CNRS

### **Requirements for applications**

#### Pure single crystal layers

- Minimum structural defect density
- Low impurity concentrations

#### Why?

Defects and impurities Science electron transport and optoelectronic properties

#### Precise thickness control

Why?

Variation of thickness  $\Rightarrow$  change in laser wavelength emission/transport properties

Doped layers with controlled impurities to increase layer conductivity

Why?

Formation of p-n junctions for lasers/increase current in transistors

#### Precise control of strain

Why?

Strain ⇒ change in electronic/optical properties

 $\Rightarrow$  can induce structural defects

In the following, mainly III-V semiconductor and 2D material epitaxy

### **III-V** semiconductors

| ador 1 | 1 IA<br>1 1.0078 |           |            |             |           |            |            |           |            | -           |            |           |           |            |           |           |           | 18 VIIIA<br>2 4.0025<br>He |
|--------|------------------|-----------|------------|-------------|-----------|------------|------------|-----------|------------|-------------|------------|-----------|-----------|------------|-----------|-----------|-----------|----------------------------|
| PBR    | KYDROGENE        | 2 114     |            |             |           |            |            |           |            |             |            | Г         | 13 IIIA   | 14 IVA     | 15 VA     | 16 VIA    | 17 VIIA   | HELDUN                     |
|        | 3 6.941          | 4 8.0122  |            |             |           |            |            |           |            |             |            |           | 5 10.611  | 6 12.011   | 7 14.007  | 8 15.900  | 9 18.998  | 10 20.180                  |
| 2      | Li               | Be        |            |             |           |            |            |           |            |             |            |           | B         | C          | N         | 0         | F         | Ne                         |
|        | LITHUM           | BÉRYLLAM  |            |             |           |            |            |           |            |             |            |           | BORE      | CARBONE    | AZOTE     | CO VOÊNE  | RUOR      | NEON                       |
|        | 11 22.990        | 12 24.305 |            |             |           |            |            |           |            |             |            |           | 13 26.082 | 14 28.066  | 15 30.974 | 16 32,065 | 17 35,453 | 18 30.648                  |
| 3      | Na               | Mg        |            |             |           |            |            |           | MILE       |             |            |           | Al        | Si         | P         | S         | Cl        | Ar                         |
|        | SCORM            | MADHESAUN | 3 IIIB     | 4 IVB       | 5 VB      | 6 VIB      | 7 VIB      | 8         | 9          | 10          | 11 iB      | 12 B      | ALUMINIUM | SILCIAN    | PHOSPHORE | SOUFRE    | CHLORE    | ARGON                      |
|        | 19 39.098        | 20 40.078 | 21 44.955  | 22 47.867   | 23 60.942 | 24 51.996  | 25 64.935  | 26 55.845 | 27 58.933  | 28 58.693   | 29 53.546  | 30 65.99  | 31 69.723 | 32 72.64   | 33 74.922 | 34 78.96  | 35 78.904 | 36 83.80                   |
| 4      | K                | Ca        | Sc         | Ti          | V         | Cr         | Mn         | Fe        | Co         | Ni          | Cu         | Zn        | Ga        | Ge         | As        | Se        | Br        | Kr                         |
|        | POTASSIUM        | CALCEN    | SCANDIUM   | TITANE      | VANADAUM  | CHROME     | MANGANESE  | FER       | COBALT     | NICHEL      | CUMRE      | ZINC      | GALLIUM   | CERMANUM   | ARSENIC   | SC ENVIL  | BROVE     | KRYPTON                    |
|        | 37 65.468        | 38 87.62  | 39 68.906  | 40 81.224   | 41 92.905 | 42 95.94   | 43 (95)    | 44 101.07 | 45 192.91  | 46 108.42   | 47 107,87  | 48 112 11 | 49 114,82 | 50 118,71  | 51 121.76 | 52 127.50 | 53 126.00 | 54 131,20                  |
| 5      | Rb               | Sr        | Y          | Zr          | Nb        | Mo         | Te         | Ru        | Rh         | Pd          | Ag         | Cd        | In        | Sn         | Sb        | Te        | Ι         | Xe                         |
|        | RUBICIUM         | STRONTIUM | YTTRUM     | ZIRCONFUM   | NORUM     | NOLYBOENE  | TECHNETILM | RUTHENRUM | RHODRIN    | PALLADIUN   | ARGENT     | CADMIU    | NORUN     | ETAN       | ANTINOINE | TELLURE   | KODE      | XENON                      |
|        | 55 132,91        | 56 137.33 | 57-71      | 72 178,49   | 73 180.85 | 74 183.84  | 75 186.21  | 76 190.23 | 77 192.22  | 78 195.08   | 79 195.97  | 80 200.60 | 81 304.38 | 82 307.3   | 83 208.08 | 84 (209)  | 85 (210)  | 86 (222)                   |
| 6      | Cs               | Ba        | La-Lu      | Hf          | Ta        | W          | Re         | Os        | Ir         | Pt          | Au         | Hg        | Tl        | Pb         | Bi        | Po        | At        | Rn                         |
|        | CESIUM           | BARYON    | Lasthaside | HAFHEM      | TANTALE   | TUNOSTÊNE  | RHÉNIUM    | OSMUM     | FICKA      | PLATINE     | OR         | MERCURE   | THALLOW   | PLONB      | BISMUTH   | POLONAM   | ASTATE    | RADON                      |
|        | 87 (223)         | SB (226)  | 89-103     | 104 (261)   | 105 (262) | 106 (286)  | 107 (254)  | 108 (277) | 109 (268)  | 110 (281)   | 111 (272)  | 112 (285) |           | 114 (289)  |           |           |           |                            |
| 7      | Fr               | Ra        | Ac-Lr      | Rſ          | Db        | Sg         | Bh         | Hs        | Mt         | Uwn         | Uuu        | Uub       |           | Uuq        | 1         |           |           |                            |
|        | FRANCIUM         | RADIUM    | Actialdes  | RUTHERFORCE | DUBNIUM   | BEABORGIUN | BOHRBUM    | HASSILM   | MEITNERIUM | UNLINVILIUM | UNUNUNUMUM | UNUNBILIN | J         | UNATION IN |           |           |           | - As                       |

GaN, GaAs, InP, GaSb, InAs.... and associated alloys





### **III-Vs : a whole family - bandgaps and applications**



price

### **Starting point : crystalline substrate**

#### Growth of a high quality heterostructure

⇒ grown materials and substrate with very close crystallographic structure and lattice parameters

#### Main substrates :

- Si : 12-inch wafers currently used in µelectronics but not directly suitable for III-V growth
- Sapphire : up to 8-inch available substrates : not lattice matched but used for nitrides (GaN)
- GaAs : up to 8-inch available substrates 6 inch currently used
- InP : up to 6-inch available substrates 3 or 4 inch currently used
- GaSb/InAs : up to 4-inch available substrates 2 inch currently used
- SiC : up to 8- inch available substrates 2 or 3 inch currently used
  - Availability of the substrate conditions the materials that can be grown epitaxially

#### 2 main epitaxial approaches

- Based on chemical processes : Metal Organic Vapor Phase Epitaxy (MOVPE)
- Based on physical processes : Molecular beam Epitaxy (MBE)



◆ Ultra-high vaccum chamber :base pressure : 10<sup>-10</sup> Torr

Cryo panels (Liquid N<sub>2</sub>)  $\Rightarrow$  improved vacuum around the sample and cooling around the cells

- Effusion cells (ovens) for elements III and V with shutters
   Elemental fluxes condensate on the surface
- Typical growth rate : 1 μm/h or 1 atomic layer/s
- Advantages
  - High purity materials
  - in-situ control during growth (RHEED)
  - thickness defined within 1 ML
- Drawbacks
  - no selectivity
  - complex technology



### What does it look like?



Cryo panel



Chamber with integrated cryo panel



Reactor fitted with equipment



### Why UHV?

- 2 main reasons for UHV
  - Molecular regime
  - Contamination/doping
- Vacuum regimes
  - Description within the kinetic theory of gases
    - ⇒ interactions molecules-molecules and molecules-reactor
  - Atom or molecule mean free path  $\lambda_m$ : mean distance between 2 successive collisions

$$\lambda_m = \frac{1}{\sqrt{2} \pi n d^2}$$

with *n* : number of molecules/ $m^3$ 

d : molecule diameter

Ideal gas law

pV = NkT, then p = nkT with k: Boltzmann constant

 $\Rightarrow \lambda_m$  depends only on *n* and on the type of molecules



### **Molecular regime**



#### Vacuum regimes

- $\lambda_m <<$  reactor dimensions  $\Rightarrow$  laminar regime : numerous collisions between molecules
- $\lambda_m \sim$  reactor dimensions  $\Rightarrow$  intermediate regime
- $\lambda_m$  >> reactor dimensions  $\Rightarrow$  molecular regime : mainly collisions between molecules and reactor

#### ✤ MBE

No collisions between molecules from the cell to the substrate

 $\Rightarrow \lambda_m \ge$  reactor dimensions (~ 1m)

$$n \leq \frac{1}{\sqrt{2} \pi \lambda_m n d^2} \sim 9.10^{17} \text{ molecules/m}^3 \text{ with } \lambda_m = 1 \text{m and } d = 5 \text{\AA}$$

 $p = nkT \le 4.10^{-3}$  Pa (~3.10<sup>-5</sup> Torr)

⇒ Not ultra high vacuum



or Vapor phase Material

substrate

### Contamination

#### Reactor at a pressure p (residual gases)

 $\Rightarrow$  impurity flux  $F_i$  on the growing surface

★ Kinetic theory of gases ⇒ F<sub>i</sub> = 
$$\frac{p}{\sqrt{2\pi m k T}}$$

**\clubsuit** Conditions on  $F_i$ 

 $F_i \ll F_0$  with  $F_0$  growth flux : typically  $10^{15}$  at./cm<sup>2</sup>.s or 1 atomic layer/s

### • What does $F_i \ll F_0$ mean exactly?

⇒2 concerns : doping and material purity





### Contamination

- For semiconductor, importance of doping
  - Common situation
    - $\sim 10^{16}$ /cm<sup>3</sup> < dopant concentration <  $\sim 10^{19}$ /cm<sup>3</sup>

To be compared with ~  $5.10^{22}$  at./cm<sup>3</sup> in the semiconductor crystal

 $\Rightarrow 10^{-6} F_0 < F_{doping} < 10^{-3} F_0$  with  $F_0$ : growth flux

Controlled doping and pure material

 $\Rightarrow F_i << F_{doping}$   $F_i < 10^{-6}F_0 \Rightarrow p < 10^{-6}F_0\sqrt{2\pi mkT} \approx 10^{-11} - 10^{-12} \text{ Torr}$   $\hookrightarrow \text{ Ultra-high vacuum domain}$ 

As flux Si flux Ga flux

 $F_i < F_{doping} \Rightarrow F_i$  gives the lowest controlled doping level /residual impurity concentration for undoped material

Remarks

- Sticking coefficient for impurities assumed to be 1 <sup>(3)</sup> but dependence on surface and gas reactivity
- Best MBE material : 10<sup>13</sup>-10<sup>14</sup> impurities/cm<sup>3</sup>

### **III-V MBE : How does it work?**

Key point : Thermodynamics

Large vapor pressure difference between elements III and V at a given temperature T

#### Or

emn

Large temperature difference between elements III and V to get the same vapor pressure





### 3 temperature rule

- ✤ Vapor pressure difference between element III and V
  - P<sub>III</sub> << P<sub>V</sub> at a given T
  - or  $P_{III} = P_V \text{ if } T_{III} >> T_V$

 $\Rightarrow T_V < T_{substrate} < T_{III}$ (  $T_V \sim 200^{\circ}$ C,  $T_{III} \ge 750^{\circ}$ C,  $T_{substrate} \sim 500-600^{\circ}$ C)

- ♦ At  $T_{III}$ , evaporation of element III  $\rightarrow$  element III flux (Ga) on the substrate

At T<sub>substrate</sub>

- $T_{substrate} < T_{III} \rightarrow element III condensates : sticking coefficient ~ 1$
- $T_{substrate} > T_V \rightarrow$  element V reevaporates unless element III on the surface
  - In excess of element V, growth of a stoichiometric compound
  - Growth rate V<sub>g</sub> determined by element III flux
  - During growth overpressure of group-V element (As, P, Sb)

⇒ no more UHV (10<sup>-8</sup> – 10<sup>-7</sup>T)



x = y thanks to
thermodynamics!<sup>©</sup>



### MBE under operation



Cell cryopanel with material residues



Cryo pump shroud with material residues



### Doping

- Doping atoms incorporated during growth (specific cells)
- Candidates
  - n-type
    - Group IV : Si, Ge, Sn in an element III site
    - Group VI : Te, S, Se in an element V site
  - p-type
    - Group II : Be, Mg, Mn, Zn in an element III site
    - Group IV : C in an element V site
- Which is the best?
  - Precise control of the doping profile

⇒ mainly Si and Te for n-type / Be and C for p-type

Not so easy!

Doping levels in the  $10^{16}$ - $10^{19}$ /cm<sup>3</sup>  $\Rightarrow$  dopant flux ~  $10^{-6}$ - $10^{-3}$  growth fluxes!



### **Core element : effusion or Knudsen cells**

- Cell filled with a material at thermodynamical equilibrium with its vapor :  $T_{cell} \Rightarrow P_{cell}$
- Kinetic theory of gases
  - Effusion rate for a cell with an orifice of area A (A<< and orifice thickness ~0)</li>

$$\Gamma_e = F_e. A = \frac{P_{cell}A}{\sqrt{2\pi m k T_{cell}}}$$
 in atoms (molecules)/unit time  
Knudsen equation

• Flux of atoms or molecules at the center C of the substrate at a distance L

$$F_{C} = \frac{\Gamma_{e}}{\pi L^{2}} = \frac{P_{cell}A}{\pi L^{2}\sqrt{2\pi mkT_{cell}}}$$

• With an angle  $\theta$  between the cell axis and the substrate normal

$$F_{C'} = F_C \cos\theta$$



Vapor phase

Material

T<sub>cell</sub>, P<sub>cell</sub>

### Core element : effusion or Knudsen cells

 $F_{C} = \frac{\Gamma_{e}}{\pi L^{2}} = \frac{P_{cell}A}{\pi L^{2} \sqrt{2\pi m k T_{cell}}}$ 

 $P_{cell}$  is only dependent on  $T_{cell}$  and on the material

 $\Rightarrow$  for a given geometry and material, the flux F only depends on  $T_{cell}$ 

⇒ For III-V MBE, the growth rate only depends on the temperature of the group-III element cells

- Expression above derived for ideal case of very small aperture A
- In practice, cylindrical of conical shape for the cell to increase the flux homogeneity (growth rate) across the substrate
  - ⇒ corrections to be applied for specific cell design but the flux remains controlled by the cell temperature
- Typical cell temperatures

Ga : 900-1000°C Al : 1000-1150°C In : 750-850°C Si : 900-1250°C

- ⇒ Usefulness of the cryo panels at 77K (!!!) to avoid excessive outgassing of the cell surrounding
- ⇒ Specific water-cooled integrated panel for large cells

#### 3. III-V MBE

### Thermal strain within the system



### Cryo panel at 77K

#### Issues with

- the large temperature gradient between cells and cryo panel
- the periodic thermal cycling of the cryo panel

### **Effusion or Knudsen cells : real cells**



Roberto Murri, "Silicon Based Thin Film Solar Cells", Bentham Science Publishers (2013) https://doi.org/10.2174/97816080551801130101

- Effusion cells mainly used for element III (Ga, In, Al) and dopants (Si, Be, Te)
- Materials used : Ta, Mo, pBN or graphite for crucible

- Group-V elements : As, P, Sb
  - High vapor pressure ⇒ valve to avoid excess group-V element in the MBE chamber
  - 950°C Rather large molecules produced by evaporation : As<sub>4</sub>, Sb<sub>4</sub>, P<sub>4</sub>  $\Rightarrow$  thermal cracker  $\Rightarrow$  As<sub>4</sub>  $\rightarrow$  2 As<sub>2</sub>







High temperature gas injector for gas thermal cracking

AsH<sub>3</sub> (PH<sub>3</sub>) can be used after thermal cracking to get As<sub>2</sub> or P<sub>2</sub> : 2 AsH<sub>3(g)</sub>  $\rightarrow$  As<sub>2(g)</sub> + 3 H<sub>2(g)</sub>





 $\Rightarrow$  Pressure in the reactor in the 10<sup>-5</sup> T range (H<sub>2</sub>)



https://www.riber.com

### **Graphene epitaxy : high T carbon cell**

MBE growth of graphene



LEED pattern of graphene on SiC Si face



https://www.mbe-komponenten.de/

Hot graphite filament : up to 2300°C





-PG top plate

Main parts of a carbon cell assembly

### **TMD** epitaxy : electron beam evaporator

- Transition metal dichalcogenides (TMDs) MX<sub>2</sub>
- Refractory materials Mo, W, Ta,...
  - Too high temperature needed to get Joule effect evaporation
  - Effusion cell not useful ⇔ electron beam evaporator





w source

water

cooling



### Conclusion

MBE requires UHV base pressure for material purity and doping control

....but the pressure during growth is not really UHV!!

- MBE is mainly a temperature story
  - Cell temperature determines the effusing flux, the growth rate and the alloy composition
  - Growth temperature allows stoichiometry for III-Vs
  - Cooling is mandatory to avoid excessive outgassing and allow high vacuum around the sample
- Large thermal stress during growth and the different cooling/warm up cycling of the cryo panel





iemn

### Thank you for your attention



