Ecole Technologique du RT Vide

Transferts de chaleur

Yann CERVANTES Yann.cervantes@cnes.fr DTN/TVO/TH

- 1. Transfert et stockage de chaleur
- 2. Développement et verification d'un système de contrôle thermique
- 3. La thermohydraulique
- 4. Les technologies cryogéniques

- 1. Transfert et stockage de chaleur
- 2. Développement et verification d'un système de contrôle thermique
- 3. La thermohydraulique
- 4. Les technologies cryogéniques

By conduction

By conduction

Conduction through thermal contact between two solids

- Unit mounting classical example
- Heat transfer efficiency (h, W/(m²*K)) depends on surface contact quality on area S

 $P = h^*S^*(Tsolid1-Tsolid2)$

By convection

Free convection

Archimedes force induces fluid motion by density variation with temperature

By convection

Forced convection

Fluid motion is forced to extract heat

By radiation under space vacuum and near Earth

- Definition
 - An exchange of heat by absorption and emission of photons energy
 - Emission is proportional to T⁴

																	,	Waveleng	gth (m
10)-9	10-8	10-7	10 ⁻⁸	10 ⁻⁵	10-4	10 ⁻³	10 ⁻²	10-1	1	10	10 ²	10 ³	104	10 ⁵	10 ⁸	10 ⁷	10 ⁸	10 ⁹
		COSMIC RAYS				X RAYS					IR			MICRO WAVES		RADIO WAVES			

Radiation: a surface phenomenon

- Surface thermo-optical properties (all wavelengths and all directions)
 - Sun spectrum \rightarrow total absorption \rightarrow solar absorptivity = α_s
 - IR spectrum \rightarrow total absorption = total emission \rightarrow IR emissivity = ε_{IR}
 - •At each wavelength, emission coefficient = absorption coefficient
 - Grey surface hypothesis: emission and absorption coefficients are not temperature dependent

 α_{s}/ϵ_{IR} ratio defines "hot" and "cold" coatings

Under space vacuum, very high sensitivity to surface thermo-optical properties.

IN SPACE 36 000 KM ALTITUDE

Heat storage and recovery

- Heat capacity (J/K) or thermal inertia
 - Heat required to increase by 1 K the temperature of a given physical medium
 - Equal to Mass (kg) * Specific heat (J/K/kg) = M.Cp
- \subset General application : M.C_p.dT/dt = Σ Heat Transfers
- Application: COROT radiator
 - For Video Electronic temporal stability: dT < 0.3 °C peak-to-peak during one orbit

Heat transfer and storage

- Conduction
- Convection
- Radiation

${\mbox{\sc -}}$ Heat storage and recovery

C Physical phenomena driving Thermal Control System development

TCS = Thermal Control System = Système de Contrôle Thermique

- 1. Transfert et stockage de chaleur
- 2. Développement et verification d'un système de contrôle thermique
- 3. La thermohydraulique
- 4. Les technologies cryogéniques

TCS development philosophy

Iterative process during the whole development sequence (constraints evolutions, design updates...)

TCS development philosophy

Iterative process during the whole development sequence (constraints evolutions, design updates...)

TCS design 6 main functions

 \sim Insulation

< Rejection

Heat transport

< Heating

Cooling (see dedicated slides)

< Regulation

TCS design Insulation

TCS design Radiative Heat Rejection

- < Objective
 - Reject heat from dissipative equipment towards heat sink (deep space in general)
- C General method
 - Use of radiative areas with large fields of view towards heat sink
 - Use coatings/paints with high IR emissivity

TCS design Rejection means

External radiators: high IR emissivity coatings + low solar absorptivity coatings
Thermal baffles: to increase radiators fields of view towards deep space and to protect radiators against external heat sources (Sunshield, Earthshield, Mercuryshield...)

TCS design Heat transport

< Objective

• Connect dissipative equipment and radiator with a temperature difference as low as possible

Means = thermal buses

- Rigid or flexible conductive links for moderate transport needs
- Thermo-hydraulic technologies allow more powerful thermal buses

- Thermal coupling + Mechanical decoupling
- "Low cost" technology
- Reliability

- Small distances (typically < 5 cm)
- Mass

TCS design Heating with regulation

< Objectives

- Integrity of equipment during operational or non operational modes
- Performances of equipment during operational modes

< Means

Heaters with many possible regulation control laws

- ON/OFF: mechanical thermostat or thermistors coupled with on-board software
- Sharp regulation: thermistors + PI control law through on-board software

Heaters, mechanical thermostats and temperature sensors Heating line = two heating circuits (N+R) and three temperature sensors for redundancy purpose

TCS Development philosophy

Iterative process during the whole development sequence (constraints evolutions, design updates...)

Thermal predictions A cost effective way to predict in-flight thermal behaviour

- Numerical models based on CAD models+simplifications/assumptions
- "Nodal Method" : Composed of two distinct entities
 - ⊂ Geometrical Mathematical Model (GMM) → for radiative exchanges and external heat sources (Sun, Earth...)
 - Thermal Mathematical Model (TMM) \rightarrow for temperature evolutions and heat exchanges between nodes
- C Space environment simulation : Sun, Earth, mission and link with TCS sizing scenario

Thermal predictions

A cost effective way to predict in-flight thermal behaviour

- C Thermal predictions results
 - Temperature evolutions over an orbit and over the whole mission duration → minimum and maximum temperatures versus allowable or design temperature ranges
 - Heat exchanges balances \rightarrow representative of the global thermal behaviour
 - Temperature mappings \rightarrow thermo-elastic analyses

TCS Development philosophy

Iterative process during the whole development sequence (constraints evolutions, design updates...)

cnes

. . .

.

Thermal Balance (TB) tests

- C Thermal Balance test is dedicated to thermal engineer to verify TCS performances and validate numerical models
- C Thermal Balance test principles
 - Simulate environmental sizing conditions
 - Reach temperature equilibrium for thermal coupling verification
 - Heat capacities correlated during transient phases for dynamic behaviour representativeness
- C Test setup developed to reduce uncontrolled heat leaks
- TB test correlation done after : fine tuning of parameters, but other methods using optimisation based on genetic algorithms

TCS Development philosophy

Iterative process during the whole development sequence (constraints evolutions, design updates...)

- 1. Transfert et stockage de chaleur
- 2. Développement et verification d'un système de contrôle thermique
- 3. La thermohydraulique
- 4. Les technologies cryogéniques

Construction and radiation heat transfers are limited

TTVS

cnes

· · · · cnes · · · ·

TTVS

\subset Advantages

- Best option due to use of Latent Heat
- Just limited in providing needed pump flow rate and $\Delta \mathsf{P}$
- Accurate temperature control of equipment units (better than 1 °C)
- Homogeneous equipment units temperatures

C Drawbacks

- Complex system (modelling, operation)
- Pump life time (mechanism)
- Microgravity performances of large loop?
- Operational use
 - Large loop: SES17 (Thales Alenia Space) since 2022
 - Lots of development in progress: US, EU (NEOSAT).

- 1. Transfert et stockage de chaleur
- 2. Développement et verification d'un système de contrôle thermique
- 3. La thermohydraulique
- 4. Les technologies cryogéniques

Cryogenic Technologies Why?

Objective: cooling to cryogenic temperature (below 200 K)

- \subset To reduce the "thermal" noise of detectors
 - Gamma Rays Detection: from 85 K to 100 K
 - SWIR Detection: from 120 K to 180 K
 - IR Detection: from 50 K to 100 K
 - FAR IR Detection: from 0.05 K to 0.3 K

 \sim To reach superconductive state of material (electrical resistance ≈ 0)

- Superconductive IMUX/OMUX (Telecoms)
- Biological samples storage (e.g. ISS experiment)

Passive Technologies

- Passive radiators only = cooling by heat radiation towards external sinks
- Example: IASI first generation, SPICA

- Cryogens (Helium, Solid Hydrogen...)
 - Examples: HERSCHEL

CNES - All rights reserved

Active Technologies

Mechanical coolers (Joule-Thomson, Pulse ulletTube, Stirling...)

Cryogenic Technologies

How?

- Examples: IASI-NG, MTG, ASTRO-H
- Sub-kelvin coolers (ADR, Dilution...)

Cryogenic technologies versus temperature

CRYOGENIC ARCHITECTURE EXAMPLE AT VERY LOW TEMPERATURE

- 1. Transfert et stockage de chaleur
- 2. Développement et verification d'un système de contrôle thermique
- 3. La thermohydraulique
- 4. Les technologies cryogéniques

