Validation de systèmes à vide pour le grand arrêt numéro 1 du LHC

Gregory CATTENOZ, CERN, TE-VSC group, on behalf of LHC Beam Vacuum section

Journées thématiques : « Problématiques Ultravides d'aujourd'hui sur les installations complexes » Institut Néel CNRS, Grenoble, 1er et 2 Décembre 2014

Outline

- Introduction
- Presentation of the vacuum validation process
- LHC beam vacuum consideration
- 3 tests overview:
 - Pump down
 - Residual Gas Analysis
 - Internal leak rate measure
- Example of the Totem roman pot detector
- Conclusion and outlook

Introduction

Vacuum baseline:

VACUUM VALIDATION → LHC BEAM VACUUM INSTALLATION

Measure and verification of vacuum performance

- Functionality
- Leak tightness
- Outgassing rate
- Residual Gas Analysis
- Leak tightness
- Functionality

Parts tested

Instruments: TCTP collimators, MKI, Roman pots,...etc. Gauges, valves, VPI, NEG cartridge...etc.

- Before bake out cycle

- After bake out cycle

Organisation flux

Coordination : G. Cattenoz

LS1 Vacuum validation: Noticeable activities

- Scheduling: Procurement Vs installation time
- Coordination: Staff
- Laboratory work
- Reception + preparation
- Bake-out cycle
- Tests and validation
- Official reporting : EDMS +
 LBV section web site

LS1 vacuum validation: Some numbers

- 2 laboratories: active/nonactive parts
- > 19 test benches: LHC + Experience
- > 18 months activity
- > 3 (+1) staff

CERN vacuum laboratory B.113

Examples of tested parts

Examples of tested parts

LHC Beam vacuum consideration

Pressure requirements:

LHC: Pmax $\approx 10^{-8}$ mbar - 100h beam life time operation **Experiments**: $10^{-10}/10^{-11}$ mbar - reduced background

Pumping characteristics

Room temperature vacuum sectors VPI: every 28m - CH₄ NEG: coating/strip/cartridge - H₂, CO, CO₂ Arcs and standalone: Cryo-pumping

Rely on NEG pumping → Localized outgassing rate: Necessity to control quantity and nature of residual species after bake out.

How to achieve vacuum performance?

- 1. UHV clean, vacuum treated parts
- 2. Tested/known sub-components
- 3. Test bench zero reference
- 4. Controlled bake-out: Instrumentation, cold point, cycle

Vacuum-fired ferrite (TT2-111R / Transtech) @1000°C/24h00 → TCTP + XRPT

Certificat de coulée acier inox pour fabrication cable BPM (TMS)

Preliminary test: Pump down

Preliminary test: Pump down

Diagnostic possible presence of contaminants or leak by comparison

Metallic substrate: P(t) fitted with 1/t equation

Internal outgassing rate measurement 1/2

Internal outgassing rate measurement 2/2

Procedure could be applied in case of active NEG present in the system

Q_[air eq.]<5.10⁻⁹ mbar.I/s correspond to ≈ 1 m saturated NEG (80mm D.) every 150 days

RGA acceptation criteria 1/2

Based on collimator specifications (EDMS 1113402)

- Maximum total outgassing rate of 2.10⁻⁷ mbar.l/s after bake out
- Presence of known residual gas in well-defined limits

Why?

- Control absence of contaminants + air leaks
- Verify partial pressure composition after bake out

How?

- RGA currents normalized to H₂: Dominant gas but not affecting NEG performance
- Acceptation limits template applied to normalized RGA currents

RGA acceptation criteria 2/2

Normalised RGA currents to H₂ with defined acceptance limits

Example of XRPT stations

XRPT station: Critical bake-out

XRPT station: Leak on BPM

YEARS / ANS CERN

XRPT station: Final results

Outgassing rate after bake out cycle at 250°C≈ 6,0.10⁻⁹ mbar.l/s.

XRPT: Conclusion based on LS1 experience

For bake out, ensure: (can not be neglected)

- Proper positioning of:
 - Regulating thermocouple
 - Appropriate heating element
- No cold point

guarantee correct temperature regulation

- ➢ Correct operation → Regular check to 50°C, 100°C, until maximum temperature
- > Removal of equipment, always after bake out cycle, to enable helium leak test

In any circumstance, allow TIME for test!

Conclusions

- All parts tested before installation
 → <u>RESPECTED BASELINE</u>
- Overall 1200 parts tested

Equipment	XRPT	Collimator	Beam instrument BTV	Sector valve (MKI)
Average Q_tot. measured [mbar.l/s]	2.0.10 ⁻⁸	3.0.10-8	4.0.10 ⁻⁹	1.5.10 ⁻⁸

 About 5% non conformity: TCSP, BQSV.5R4, BWS.5R4, TDI blocs, insert, VPIAN

Non-conformities distribution

Outlook and further development

General/logistics:

- Put in place tool to identify components at reception
- Use of EDMS as tool for report results acknowledgement
- Take part in the conceptual phase, prototyping and follow fabrication of critical component

Measures:

- Review acceptance criteria
- Allow time to carry out sub-assembly test of complete system (i.e. Roman pot)
- Perform regular zero measurement of test bench
- Operate recurrent RGA calibration

More details on this subject

Proceedings of IPAC2014, Dresden, Germany

WEPME041

VACUUM ACCEPTANCE TESTS FOR THE UHV ROOM TEMPERATURE VACUUM SYSTEM OF THE LHC DURING LS1

G. Cattenoz, V. Baglin, G. Bregliozzi, D. Calegari, J. Gallagher, A. Marraffa, and P. Chiggiato European Organization for Nuclear Research, CERN, 1211 Geneva 23, Switzerland

Thank you for your attention

